Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38540189

RESUMO

Rotundifuran (RF), a potent anti-inflammatory and anti-cancer compound, is a natural compound predominantly present in Vitex Rotundifolia. Herein, we investigated the effects of RF on the growth of lung cancer cells. Our findings suggested that RF inhibits cell growth, highlighting its potential as a therapeutic agent for cancer treatment. Interestingly, we observed that cell growth inhibition was not due to apoptosis, as caspases were not activated and DNA fragmentation did not occur. Furthermore, we found that intracellular vacuoles and autophagy were induced, but RF-induced cell death was not affected when autophagy was inhibited. This prompted us to investigate other possible mechanisms underlying cell growth inhibition. Through a cDNA chip analysis, we confirmed changes in the expression of ferroptosis-related genes and observed lipid peroxidation. We further examined the effect of ferroptosis inhibitors and found that they alleviated cell growth inhibition induced by RF. We also observed the involvement of calcium signaling, ROS accumulation, and JNK signaling in the induction of ferroptosis. Our findings suggested that RF is a potent anti-cancer drug and further studies are needed to validate its clinal use.

2.
Heliyon ; 9(9): e20154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809903

RESUMO

Background: Methyl lucidone (ML), a methyl derivative of lucidone, has anti-inflammatory properties. However, the molecular mechanisms that reduce the inflammatory effect of ML in human lung epithelial cells remain unkown. This study aimed to elucidate the molecular mechanisms underlying the anti-inflammatory effect of ML. Methods: Four compounds (ML, methyl linderone, kanakugiol, and linderone) from Lindera erythrocarpa Makino were evaluated for their ability to reduce MUC5AC secretion levels in phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells using ELISA. The expression and secretion levels of inflammatory response-related proteins were analyzed using quantitative reverse transcription-PCR, ELISA, and western blotting. To determine whether ML directly regulates TGF-ß-activated kinase 1 (TAK1), we performed an in vitro kinase assay. Results: ML treatment effectively reduced the levels of inflammatory cytokines, including interleukin-1ß and TNF-α, increased by stimulation. Furthermore, ML downregulated the pathway cascade of both IκB kinase (IKK)/NF-κB and p38 mitogen-activated protein (MAP) kinase/CREB by inhibiting the upstream kinase TAK1. An in vitro kinase analysis confirmed that ML treatment significantly reduced the kinase activity of TAK1. Conclusion: ML pretreatment repressed the PMA-stimulated inflammation reaction by reducing the TAK1-mediated IKK/NF-κB and p38 MAP kinase/CREB signaling. These findings suggest that ML may improve respiratory health and can be used as a dietary supplement or functional food to prevent inflammatory lung diseases.

3.
J Enzyme Inhib Med Chem ; 38(1): 2252198, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649388

RESUMO

Affinity-based ultrafiltration-mass spectrometry coupled with ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry was utilised for the structural identification of direct tyrosinase ligands from a crude Pseudolysimachion rotundum var. subintegrum extract. False positives were recognised by introducing time-dependent inhibition in the control for comparison. The P. rotundum extract contained nine main metabolites in the UPLC-QTOF-MS chromatogram. However, four metabolites were reduced after incubation with tyrosinase, indicating that these metabolites were bound to tyrosinase. The IC50 values of verproside (1) were 31.2 µM and 197.3 µM for mTyr and hTyr, respectively. Verproside showed 5.6-fold higher efficacy than that of its positive control (kojic acid in hTyr). The most potent tyrosinase inhibitor, verproside, features a 3,4-dihydroxybenzoic acid moiety on the iridoid glycoside and inhibits tyrosinase in a time-dependent and competitive manner. Among these three compounds, verproside is bound to the active site pocket with a docking energy of -6.9 kcal/mol and four hydrogen bonding interactions with HIS61 and HIS85.


Assuntos
Glucosídeos Iridoides , Monofenol Mono-Oxigenase , Humanos , Cromatografia Líquida , Glicosídeos
4.
J Med Food ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37566462

RESUMO

Regulation of diacylglycerol acyltransferase (DGAT) and pancreatic lipase (PL) activities is important in the treatment of triacylglycerol (TG)-related metabolic diseases. Garcinia mangostana, also known as mangosteen, is a traditional medicine ingredient used in the treatment of inflammation in Southeast Asia. In this study, The ethanolic extract of G. mangostana peel inhibited human recombinant DGAT1 and DGAT2, and PL enzyme activities in vitro. The inhibitory activity of DGAT1 and DGAT2 enzymes of four representative bioactive substances in mangosteen was confirmed. In addition, G. mangostana was confirmed to suppress the serum TG levels in C57 mice by inhibiting the absorption and synthesis of TG in the gastrointestinal tract. Through this study, it was revealed that G. mangostana extract could be useful for the prevention and amelioration of TG-related metabolic diseases such as obesity and fatty liver.

5.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569348

RESUMO

Asthma is a chronic inflammatory lung disease that causes respiratory difficulties. Black ginseng extract (BGE) has preventative effects on respiratory inflammatory diseases such as asthma. However, the pharmacological mechanisms behind the anti-asthmatic activity of BGE remain unknown. To investigate the anti-asthmatic mechanism of BGE, phorbol 12-myristate 13-acetate plus ionomycin (PMA/Iono)-stimulated mouse EL4 cells and ovalbumin (OVA)-induced mice with allergic airway inflammation were used. Immune cells (eosinophils/macrophages), interleukin (IL)-4, -5, -13, and serum immunoglobulin E (IgE) levels were measured using an enzyme-linked immunosorbent assay. Inflammatory cell recruitment and mucus secretion in the lung tissue were estimated. Protein expression was analyzed via Western blotting, including that of inducible nitric oxide synthase (iNOS) and the activation of protein kinase C theta (PKCθ) and its downstream signaling molecules. BGE decreased T helper (Th)2 cytokines, serum IgE, mucus secretion, and iNOS expression in mice with allergic airway inflammation, thereby providing a protective effect. Moreover, BGE and its major ginsenosides inhibited the production of Th2 cytokines in PMA/Iono-stimulated EL4 cells. In EL4 cells, these outcomes were accompanied by the inactivation of PKCθ and its downstream transcription factors, such as nuclear factor of activated T cells (NFAT), nuclear factor kappa B (NF-κB), activator of transcription 6 (STAT6), and GATA binding protein 3 (GATA3), which are involved in allergic airway inflammation. BGE also inhibited the activation of PKCθ and the abovementioned transcriptional factors in the lung tissue of mice with allergic airway inflammation. These results highlight the potential of BGE as a useful therapeutic and preventative agent for allergic airway inflammatory diseases such as allergic asthma.


Assuntos
Antiasmáticos , Asma , Hipersensibilidade , Panax , Animais , Camundongos , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Interleucina-4/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Hipersensibilidade/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Imunoglobulina E , Panax/metabolismo , Ovalbumina , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
6.
Int J Mol Sci ; 24(8)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108220

RESUMO

The recently defined type of cell death ferroptosis has garnered significant attention as a potential new approach to cancer treatment owing to its more immunogenic nature when compared with apoptosis. Ferroptosis is characterized by the depletion of glutathione (GSH)/glutathione peroxidase-4 (GPx4) and iron-dependent lipid peroxidation. Diplacone (DP), a geranylated flavonoid compound found in Paulownia tomentosa fruit, has been identified to have anti-inflammatory and anti-radical activity. In this study, the potential anticancer activity of DP was explored against A549 human lung cancer cells. It was found that DP induced a form of cytotoxicity distinct from apoptosis, which was accompanied by extensive mitochondrial-derived cytoplasmic vacuoles. DP was also shown to increase mitochondrial Ca2+ influx, reactive oxygen species (ROS) production, and mitochondrial permeability transition (MPT) pore-opening. These changes led to decreases in mitochondrial membrane potential and DP-induced cell death. DP also induced lipid peroxidation and ATF3 expression, which are hallmarks of ferroptosis. The ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 were effective in counteracting the DP-mediated ferroptosis-related features. Our results could contribute to the use of DP as a ferroptosis-inducing agent, enabling studies focusing on the relationship between ferroptosis and the immunogenic cell death of cancer cells.


Assuntos
Ferroptose , Humanos , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Frutas/metabolismo , Morte Celular/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Poro de Transição de Permeabilidade Mitocondrial/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108390

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.


Assuntos
Interleucina-6 , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Iridoides/farmacologia , Iridoides/uso terapêutico , Iridoides/metabolismo , Pulmão/metabolismo , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Proteína Quinase C-delta/metabolismo
8.
J Biotechnol ; 368: 53-59, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084888

RESUMO

Centella asiatica (L.) Urban is an herbaceous perennial plant of the Apiaceae family that has diverse medicinal uses. Its active components are saponin, phenolics, and polyacetylenes. Plant cell cultures have been exploited for the efficient production of metabolites with pharmacological activity. In this work, we prepared adventitious root cultures of C. asiatica and analyzed their content and biological activity. Adventitious root extracts were found to increase glucose uptake by differentiated L6 skeletal muscle cells and to be more efficient than the extract of whole plants. Chromatographic fractionation of the extracts from adventitious roots of C. asiatica led to the isolation of two known polyacetylenes, araliadiol (1) and 8-acetoxy-1,9-pentadecadiene-4,6-diyn-3-ol (2), in addition to a new polyacetylene, which we have named centellidiol (3). All the three polyacetylenes stimulated glucose uptake in a dose-dependent manner. The methanol extract of adventitious roots contained 0.53% and 0.82% of compounds 1 and 2, respectively, which are values that were 15 and 21 times higher that are found in mother plants. We therefore suggest that the high content of these polyacetylenes contributes to the high efficacy of C. asiatica adventitious root cultures. Overall, adventitious root cultures of C. asiatica can be part of a secure supply of effective ingredients including polyacetylenes.


Assuntos
Centella , Triterpenos , Centella/química , Centella/metabolismo , Polímero Poliacetilênico/metabolismo , Polímero Poliacetilênico/farmacologia , Extratos Vegetais/química , Triterpenos/farmacologia , Glucose/metabolismo
9.
Am J Respir Cell Mol Biol ; 67(3): 309-319, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35679109

RESUMO

Pulmonary fibrosis is a devastating lung disease with few therapeutic options. CHIT1 (chitinase 1), an 18 glycosyl hydrolase family member, contributes to the pathogenesis of pulmonary fibrosis through the regulation of TGF-ß (transforming growth factor-ß) signaling and effector function. Therefore, CHIT1 is a potential therapeutic target for pulmonary fibrosis. This study aimed to identify and characterize a druggable CHIT1 inhibitor with strong antifibrotic activity and minimal toxicity for therapeutic application to pulmonary fibrosis. Extensive screening of small molecule libraries identified the aminoglycoside antibiotic kasugamycin (KSM) as a potent CHIT1 inhibitor. Elevated concentrations of CHIT1 were detected in the lungs of patients with pulmonary fibrosis. In in vivo bleomycin- and TGF-ß-stimulated murine models of pulmonary fibrosis, KSM showed impressive antifibrotic effects in both preventive and therapeutic conditions. In vitro studies also demonstrated that KSM inhibits fibrotic macrophage activation, fibroblast proliferation, and myofibroblast transformation. Null mutation of TGFBRAP1 (TGF-ß-associated protein 1), a recently identified CHIT1 interacting signaling molecule, phenocopied antifibrotic effects of KSM in in vivo lungs and in vitro fibroblasts responses. KSM inhibits the physical association between CHIT1 and TGFBRAP1, suggesting that the antifibrotic effect of KSM is mediated through regulation of TGFBRAP1, at least in part. These studies demonstrate that KSM is a novel CHIT1 inhibitor with a strong antifibrotic effect that can be further developed as an effective and safe therapeutic drug for pulmonary fibrosis.


Assuntos
Aminoglicosídeos , Antifibróticos , Quitinases , Fibrose Pulmonar , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Animais , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Bleomicina/farmacologia , Quitinases/antagonistas & inibidores , Fibroblastos/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo
10.
J Ginseng Res ; 46(3): 496-504, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600779

RESUMO

Background: Cigarette smoke (CS) is considered a principal cause of chronic obstructive pulmonary disease (COPD) and is associated with mucus hypersecretion and airway inflammation. Ginsenoside compound K (CK), a product of ginsenoside metabolism, has various biological activities. Studies on the effects of CK for the treatment of COPD and mucus hypersecretion, including the underlying signaling mechanism, have not yet been conducted. Methods: To study the protective effects and molecular mechanism of CK, phorbol 12-myristate 13-acetate (PMA)-induced human airway epithelial (NCI-H292) cells were used as a cellular model of airway inflammation. An experimental mouse COPD model was also established via CS inhalation and intranasal administration of lipopolysaccharide. Mucin 5AC (MUC5AC), monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), and interleukin-6 secretion, as well as elastase activity and reactive oxygen species production, were determined through enzyme-linked immunosorbent assay. Inflammatory cell influx and mucus secretion in mouse lung tissues were estimated using hematoxylin and eosin and periodic acid-schiff staining, respectively. PKCδ and its downstream signaling molecules were analyzed via western blotting. Results: CK prevented the secretion of MUC5AC and TNF-α in PMA-stimulated NCI-H292 cells and exhibited a protective effect in COPD mice via the suppression of inflammatory mediators and mucus secretion. These effects were accompanied by an inactivation of PKCδ and related signaling in vitro and in vivo. Conclusion: CK suppressed pulmonary inflammation and mucus secretion in COPD mouse model through PKC regulation, highlighting the compound's potential as a useful adjuvant in the prevention and treatment of COPD.

11.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453364

RESUMO

Cigarette smoke (CS) is a risk factor that can induce airway enlargement, airway obstruction, and airway mucus hypersecretion. Although studies have shown that Korean black ginseng extract (BGE) has potent anti-inflammatory and antioxidant activities, the CS-induced inflammatory responses and molecular mechanisms are yet to be examined. The aim of this study was to examine the effect of BGE on the airway inflammatory response and its molecular mechanisms, using CS/lipopolysaccharides (LPS)-exposed animals and PMA-stimulated human airway epithelial NCI-H292 cells. The results show that BGE inhibited the recruitment of immune cells and the release of inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, elastase, and reactive oxygen species (ROS) in the airways of CS/LPS-exposed animals. BGE inhibited mucus secretion and the expression of Mucin 5AC (MUC5AC). Furthermore, BGE exhibited an anti-inflammatory effect by downregulating a signaling pathway mediated by transforming growth factor-ß-activated kinase (TAK) 1, an important protein that accelerates inflammation by cigarette smoke (CS). Overall, the findings show that BGE inhibits lung inflammation and mucus secretion by decreasing the activation of TAK1 both in human epithelial cells and in CS/LPS-exposed animals, and could be a potential adjuvant in the treatment and prevention of airway inflammatory diseases caused by airway irritants such as CS.

12.
Phytomedicine ; 96: 153848, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785110

RESUMO

BACKGROUND: Since long-term or high-dose use of COPD medication causes adverse effects in patients with COPD, more effective and safer ways to manage COPD symptoms are required. Daphne kiusiana Miquel is a medicinal plant, but its anti-COPD efficacy was little studied. PURPOSE: We investigated the anti-COPD activity and molecular mechanism of action of active compounds isolated from D. kiusiana to find drug candidates for COPD. METHODS: We isolated seven compounds (1-7) in an ethyl acetate (EtOAc) fraction from D. kiusiana, and determined that seven compounds effectively control the inflammatory responsiveness in both PMA-stimulated lung epithelial cells (in vitro) and/or in COPD model mice using cigarette smoke- and lipopolysaccharides-exposed animals in vivo. RESULTS: We show that the ethyl acetate (EtOAc) fraction from D. kiusiana. suppresses inflammatory response in both PMA-stimulated human lung epithelial cells (in vitro) and COPD model mice (in vivo). The EtOAc fraction effectively suppresses various inflammatory responses, such as mucus secretion, ROS production, bronchial recruitment of inflammatory cells, and release of proinflammatory cytokines. Additionally, we isolated three compounds with anti-inflammatory efficacy from the EtOAc fraction, out of which daphnodorin C was the most effective. Finally, we demonstrated that daphnodorin C negatively regulates inflammatory gene expression by suppressing NF-κB and specific MAPK signaling pathways (JNK and p38) in vitro and in vivo. CONCLUSIONS: These results suggest that daphnodorin C could be a promising therapeutic alternative for managing COPD symptoms.


Assuntos
Daphne , Doença Pulmonar Obstrutiva Crônica , Animais , Benzopiranos , Humanos , Inflamação/tratamento farmacológico , Pulmão , Camundongos , NF-kappa B , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Fumaça
13.
Biomedicines ; 9(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680566

RESUMO

Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.

14.
Mol Cells ; 44(1): 38-49, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33510050

RESUMO

Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel- forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor ß (TGFß) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFß significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFß receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFß-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFß-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFß-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFß-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFß1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.


Assuntos
Histona Desacetilase 2/metabolismo , Lisina/metabolismo , Mucina-5AC/genética , NF-kappa B/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Mucina-5AC/metabolismo , Regiões Promotoras Genéticas/genética
16.
Int Immunopharmacol ; 88: 107002, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182035

RESUMO

3,4,5-Trihydroxycinnamic acid (THCA) has been reported to possess anti-inflammatory activity. However, the effect of THCA for treating allergic asthma was unknown. Therefore, in the present study, the anti-asthmatic effects of THCA were studied in both in vitro and in vivo studies. In phorbol 12-myristate 13-acetate (PMA)-stimulated A549 airway epithelial cells, THCA pretreatment decreased the mRNA expression and secretion of interleukin (IL)-8, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecules 1 (ICAM-1), and reduced the mRNA expression of matrix metalloproteinase 9 (MMP-9). THCA also inhibited PMA-induced protein kinase B (AKT), mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activation in A549 cells. In lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, THCA pretreatment suppressed the mRNA expression of ICAM-1 and MMP-9. In addition, THCA suppressed the adhesion of EOL and A549 cells. In ovalbumin (OVA)-administered asthmatic mice, THCA exerted inhibitory activity on IL-5, IL-13, and MCP-1 in bronchoalveolar lavage fluid (BALF) and on OVA-specific immunoglobulin E (IgE) in serum. THCA attenuated the numbers of inflammatory cells in BALF and the influx of inflammatory cell in lung tissues. Furthermore, THCA downregulated the levels of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), and leukotriene B4 (LTB4) expression, mucus production and CREB phosphorylation as well as Penh value. These effects were accompanied by suppression of AKT, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB activation. Therefore, the results of the current study suggest that THCA may be a valuable adjuvant or therapeutic in the prevention or treatment of allergic asthma.


Assuntos
Asma/induzido quimicamente , Asma/tratamento farmacológico , Cinamatos/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Quimiocinas/genética , Quimiocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/toxicidade , Células RAW 264.7 , Distribuição Aleatória
17.
Cytokine ; 131: 155116, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388485

RESUMO

Longifolioside A is an iridoid glucoside compound isolated from Pseudolysimachion rotundum var. subintegrum, which has been used in traditional herbal medicines to treat respiratory inflammatory diseases. Logifolioside A is a potent antioxidant; however, its underlying pharmacological mechanisms of action in inflammatory diseases are unknown. Here, we investigated the inhibitory effects of longifolioside A in lipopolysaccharide (LPS)-stimulated toll-like receptor 4 (TLR4) signal transduction systems using human THP-1 macrophages and HEK293 cells stably expressing human TLR4 protein (293/HA-hTLR4). Longifolioside A significantly reduced the release of inflammatory cytokines such as interleukin (IL)-6, -8, and tumor necrosis factor (TNF)-α in LPS-stimulated THP-1 macrophages. Furthermore, longifolioside A inhibited the expression of inflammatory mediator genes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 that produce nitric oxide (NO) and prostaglandin E2 (PGE2), respectively. Longifolioside A suppressed the phosphorylation of PKCδ, IRAK4, IKKα/ß, IκBα, and mitogen-activated protein (MAP) kinases (ERK 1/2 and JNK, but not p38), thereby inactivating the nuclear localization of NF-κB and AP-1, and thus decreasing the expression of inflammatory response genes. Notably, longifolioside A disrupted the interaction between human TLR4 and the TIR domain-containing adaptor protein (TIRAP), an early step during TLR4 activation, thereby reducing IL-8 secretion in 293/HA-hTLR4 cells. This inhibitory effect was comparable to that of TAK-242 (a TLR4 inhibitor, or resatorvid). Our results indicate that longifolioside A prevents inflammatory response by suppressing TLR4 activation required for NF-κB and AP-1 activation.


Assuntos
Mediadores da Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , NF-kappa B/metabolismo , Proteína Quinase C-delta/metabolismo , Receptores de Interleucina-1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Fator de Transcrição AP-1/metabolismo
18.
Phytomedicine ; 68: 153178, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32126492

RESUMO

BACKGROUND: Lowering blood glucose levels by increasing glucose uptake in insulin target tissues, such as skeletal muscle and adipose tissue, is one strategy to discover and develop antidiabetic drugs from natural products used as traditional medicines. PURPOSE: Our goal was to reveal the mechanism and activity of acacetin (5,7-dihydroxy-4'-methoxyflavone), one of the major compounds in Agastache rugose, in stimulating glucose uptake in muscle cells. METHODS: To determine whether acacetin promotes GLUT4-dependent glucose uptake in cultured L6 skeletal muscle cells, we performed a [14C] 2-deoxy-D-glucose (2-DG) uptake assay after treating differentiated L6-GLUT4myc cells with acacetin. RESULTS: Acacetin dose-dependently increased 2-DG uptake by enhancing GLUT4 translocation to the plasma membrane. Our results revealed that acacetin activated the CaMKII-AMPK pathway by increasing intracellular calcium concentrations. We also found that aPKCλ/ζ phosphorylation and intracellular reactive oxygen species (ROS) production were involved in acacetin-induced GLUT4 translocation. Moreover, acacetin-activated AMPK inhibited intracellular lipid accumulation and increased 2-DG uptake in HepG2 cells. CONCLUSION: Taken together, these results suggest that acacetin might be useful as an antidiabetic functional ingredient. Subsequent experiments using disease model animals are needed to verify our results.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Flavonas/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Desoxiglucose/farmacocinética , Relação Dose-Resposta a Droga , Glucose/farmacocinética , Transportador de Glucose Tipo 4/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Bioorg Chem ; 92: 103234, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479985

RESUMO

Nine new xanthones, cudracuspixanthones I - Q (12-14, 25, 32-36), and 30 known xanthones (1-11, 15-24, 26-31, 37-39) were isolated from the stems of Cudrania tricuspidata (Moraceae). The structures of isolated compounds were established by using 1D and 2D NMR in combination with HR-TOF-MS. Xanthones from the stems of C. tricuspidata exerted pancreatic lipase inhibitory activity. In addition, cudracuspixanthone P (35), a new xanthone, reduced the fat accumulation in liver cells stimulated with fatty acids. Therefore, these compounds might be beneficial in the treatment of metabolic diseases.


Assuntos
Lipase/antagonistas & inibidores , Metabolismo dos Lipídeos/efeitos dos fármacos , Moraceae/química , Pâncreas/efeitos dos fármacos , Caules de Planta/química , Xantonas/farmacologia , Células Hep G2 , Humanos , Estrutura Molecular , Pâncreas/embriologia , Extratos Vegetais/química , Triglicerídeos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...